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We analyze in this paper the process of group contraction which allows the 
transition from the Einstenian quantum dynamics to the Galilean one in terms 
of the cohomology of the Poincar6 and Galilei groups. It is shown that the 
cohomological constructions on both groups do not commute with the contrac- 
tion process. As a result, the extension coboundaries of the Poincar6 group which 
lead to extension cocycles of the Galilei group in the "nonrelativistic" limit are 
characterized geometrically. Finally, the above results are applied to a quantiz- 
ation procedure based on a group manifold. 

1. I N T R O D U C T I O N  

The re levance  o f  the U( 1)-centra l  ex tens ions  G(,,~ o f  the t e n - p a r a m e t e r  
Ga l i l e i  g roup  G ( G  = G ( , , ) / U ( 1 ) )  in "nonre la t iv i s t i c "  qua n tum mechan ics  
is well  k n o w n  since the work  o f  Bargmann  ~ (1954). The  poss ib i l i ty  o f  having  
nont r iv ia l  ex tens ions  is t ied  to the nontr iv ia t  c o h o m o l o g y  o f  the Gal i le i  
g roup ,  a fact  which  has recen t ly  been  exp lo i t ed  ( A l d a y a  and  de Azcfirraga,  
1982, 1984; A l d a y a  et al., 1984) to define a g roup  theore t ica l  a p p r o a c h  to 
geomet r i c  quan t i za t ion  b a s e d  on the U(1)  p r inc ipa l  f ibered s t ructure  
P ( M ,  U(1))  which  can  be def ined for  the  ex tended  Gal i l e i  g roup  
[(~(m>(G, U(1))]  or  " q u a n t u m  group . "  As is known  since the ear ly  work  o f  
Wigner  (1939), the s i tua t ion  for  the (relat ivis t ic)  Poincar6 g roup  is com- 
p le te ly  different.  The fact  that  the Poincar6  g roup  has tr ivial  c o h o m o l o g y  
is usua l ly  t r ans la ted  by  s ta t ing that  the p ro jec t ive  un i ta ry  represen ta t ions  
o f  the  Poincar6  g roup  ~ = Tro Lr+ (o means  semid i rec t  p roduc t )  are in fact  
o b t a i n e d  f rom the un i ta ry  represen ta t ions  o f  its universa l  cover ing group  

= T r o S L ( 2 ,  C )  and  so the  phase  factors  are  r e duc e d  to a • sign. ~ was 
ca l led  by  Wigne r  (1964) the  " q u a n t u m  mechan ica l  g roup . "  
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The Galilei and Poincar6 relativity groups, relevant in the nonrelativisfic 
and relativistic dynamics, respectively, are groups related by contraction 
(In6nii and Wigner, 1953; In6nii, 1964), a process which is realized as the 
limit c-->~. However, the structure of G<m)--central extension of G by 
U(1) - -and  that of P |  U(1) are completely different, and the question 
arises of knowing when a coboundary generating a necessarily direct product  
extension of  ~ leads to a true cocycle of  G. This question was answered 
first by Saletan (Saletan, 1961; Hermann, 1966) in algebraic terms. Here 
we wish to reexamine the problem in differential geometric terms, and to 
analyze the noncommutativity of the contraction process in connection with 
the canonical construction of a quantum dynamical structure on the group 
of symmetry. This study is interesting because it constitutes a possible way 
out to the problem of formulating a relativistic quantum dynamics on a 
group manifold which in a first stage would be forbidden since the trivial 
Poincar6 group cohomology prevents its extension by U(1). More precisely, 
the following analysis establishes the difference between a purely relativistic 
quantum dynamics--associated with the Poincar6 group--which leads 
through contraction to the corresponding Galilean dynamics, and the cus- 
tomary relativistic dynamics which is based on an action of the Poincar6 
group--as  realized by the customary quantum operators--but  whose associ- 
ated equations of motion (as, for instance, the Klein-Gordon equation) 
require the previous substraction of  the rest mass energy me 2 in order to 
produce a nonrelativistic limit. To this aim, we analyze (Section 2) the 
characterization of U(1) central extensions G of a group G and how a 
direct product  extension G |  U(1) may lead through contraction to a 
nontrivial one t~c of the contracted group Go. We also study how the 
selection of a coboundary modifies the geometric differential structure which 
can be built on the extended group and, in particular, how an invariant 
connection can be defined on the fibered structure (~(G, U(1)). Section 3 
is devoted to considering the Poincar6 and Galilei cases, showing explicitly 
the different connection forms (flat and nonflat) which may be defined on 
~ |  U(1) (~,  U(1)). Finally, in Section 4 we discuss the application of the 
above constructions to the formulation of a quantum dynamics. 

2. CENTRAL EXTENSIONS, COHOMOLOGY,  AND THE 
CONTRACTION PROCESS 

Let G be a Lie group and let G be a central extension of G by U(1) 
with composition law 

~,"= ~'*~, = (g'*g,  ~'~ exp i~(g', g))=-- (g", ~") (1) 
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were if-= e ~~ and ~c: G x G o  R is the two-cocycle  of  the extension which 
satisfies (Bargmann ,  1954) 

~:(e, g)  = 0, r162 
(2) 

~(g ,  e )  = 0 

I f  we pe r fo rm the reparamet r iza t ion  

~'~-~ ~'o = s r exp i6 (g ) ,  g~--~g (3) 

where  6 is a real funct ion on G, 6(e)  = 0, (2) will now be writ ten as 

g , ' * g , = - - ( g ' , r 1 6 2 1 6 2 1 6 2  (4) 

C o m p a r i n g  s with ~" one  immedia te ly  obta ins  

s%(g', g)  = r  g)  + 6 (g '  g )  - 6 ( g  ') - 6 ( g )  (5) 

A cocycle o f  the fo rm r  g )  = ~ ( g ' g )  - 6 (g ' )  - 6 ( g )  is called a c o b o u n d a r y ;  
for  such a s c, the law (1) is in fact the direct p roduc t  law as we may  use (5) 
to get ~:o(g', g ) =  0. The extensions are thus character ized by the second 
c o h o m o l o g y  g roup  H~(G,  U(1)) (i.e., cocyc les /coboundar ies ) .  

Let us now consider  in which way the addi t ion  o f  a cob0unda ry  modif ies  
the express ion  of  the Lie a lgebra  generators  of  (a trivial extension)  (~ = -  
G |  U(1)  as given, say, by  the left invar iant  vector  fields ~ L  on G. We 
shall assume,  moreover ,  that  their  original fo rm has been  ob ta ined  for  the 
case in which ~:=0, i.e., that  they are just  given by the U ( I )  vector  field 

= i~(O/O~) plus the i = 1 �9 �9 �9 r vector  fields X L g, on G (the gi paramet r ize  
the elements  of  G).  Under  the addi t ion o f  a cobounda ry  we get f rom (5) 
with ~: = 0 

~ L  = X L +O~o(g',  g )  ,~ 

gi gi 0 g i  g = e 

= XCm + 6 ( g ' g )  -- 6(g ' )  -- ~(g)]l~=e 

' ' L Ogi J g = ~ d  ~ = X m  

where Lx~, is the Lie derivative,  plus 
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"L (initially just L (6a) shows that the Xg, Xg~ in the zero coboundary parametriz- 
ation) will in general acquire a U(1) component.  Because of (6a) and the 
fact that 06(g)/Og~[g=~ is a constant, the commutator  of  two elements 
Xg," t_ =- f~, Xgj" L =-- I7" of  the algebra (we shall omit the superscript L henceforth) 
is now given by 

[2, ~=[x ,  Y]+([x, r ] .  a(g))_~ 

= Z + ( L z S ( g ) ) Z  = Z. + [ O 6 ( g ) ]  
L agz dg=e 

I I  

(7) 

The last term may be absent; in this case, there is no modification of the 
structure constants. 

In the same way we may now consider in which form the canonical 
left-invariant form 0 on the group, and more specifically, the component  
0 dual to the U(1) generator ~,  is modified by the addition of a coboundary. 
Such a l-form is defined by the conditions 

o(2~,) =0 v2~,, o (_)  = 1 

When 8 = 0, ffg, = Xg, and the U(1) component  of  the canonical 1-form on 
G |  U(1) is given by d~/i~. When the coboundary is nonzero, it modifies 
the form of the invariant vector fields and the new expression for the 
cahonical U(1) component  is given in general by 

O=Ogjdg'+ ( 0 ; =  1) (8) 

Writing the vector fields on G |  U(1) as 

.~r J ~  = (9) = X(g,) Ogj (g')~ 

where X~g~)= Lx(~,)6(g) -[06(g)/Ogi]g=e [(6a)], the components of O satisfy 

9 v J  + X  ~ -c~ (10) 
g i / x  (g i )  (g i )  - -  ,d 

One checks that, since all X(g,) are independent,  | = 0  when X~g~)= 0, 
and in this case ( 8 ( g ) = 0 ) O  reduces to d~/i~. When the terms X~g~) in 
are of  the form Lx(g, fi(g), i.e., when 08(g)/Og![g=e =0,  (10) reads 

o w + . . s  OS(g) o~(g) g;o.(g~) ... ( g O - -  = O, O g j -  ( l l )  Og~ Og~ 
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which implies 

r/Y 
| =-~-  d(6(g)) (11') 

where d is the exterior derivative and so dO = 0. When X(gi) is given by 
its full form (6a), dO defines a presymplectic form as in the case of  a true 
extension. In either case, the change of variables (3) brings O to the form 
d~/i~ as corresponds to a direct product extension. 

Because of the U(1)-principal  fibered structure, it is clear that O may 
be understood (see Section 3) as a connection form defining the horizontal 
components  of  vector fields: X is horizontal iff |  = 0. Thus, the vector 
fields )((gi) are horizontal (despite the ~" component)  and E is vertical. 
Nevertheless only when ) (  = X + (Lx~(g ) )~  [cf. (6a)] the horizontal vector 
fields generate a subalgebra (isomorphic to the algebra ~ of G). 

We may now discuss the contraction process in the above cohomologi- 
cal context. In it, the question of obtaining a nontrivial central extension 
Gc of the contracted group Gc from a trivial (direct product) one of a group 
G is a consequence of the noncommutativi ty of  the following diagram- 

contraction 
G| 

change of 

coboundary 

contraction 
G |  U(1) 

> ac@ U(1) 

> d< 

where in the first line we have assumed that the direct product G |  U(1) 
is directly given by the usual direct product  law (no coboundary).  Thus, 
we have to determine the class of  coboundaries of G which in the contraction 
process give rise to true cocycles of Gc = Go/U(1) .  (In the particular case 
we shall be interested in, G = ~ (Poincar6), Gc = G (Galilei), Gc = G(m) 
[U(1)-extended Galilei group].) Because of (7), when 

06(___g) = 0  (12) 
Ogi Ig=e 

the commutat ion relations for the vector fields 3~ of G |  U( I )  are explicitly 
those of  the direct product,  and the contraction process cannot change this 
situation: we are in the first line of  the above diagram. But i f(12) is not 
zero we may obtain a contracted group Gc which will be a central extension 
of Gc trivial or not according to whether the contracted 6(g) is well defined 
or not. Obviously if 6(g) is not defined in the contraction limit, the generated 
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coboundary ~:(g', g ) =  ~(g '*g) -  8(g ' ) -  8(g) will lead, if defined in such a 
limit, to a true cocycle of  the contracted group (Saletan, 1961; Hermann,  
1966) since there will be no generating function for such a cocycle. 2 

3. THE CASE OF T H E  POINCARI~ AND GALILEI  GROUPS.  
LEFF-JNVARIANT VECTOR FIELDS AND P R I N C I P A L  
BUNDLE STRUCTURE WITH C O N N E C T I O N  

Because the function 8 : G - > $  is an exponent,  it is clear that 8(g) has 
to be dimensionless. [We use exponents Of the form exp[(i/h)~] and put 
h = 1 throughout;  one may notice at this stage the quantum character of  
the U(1) extensions because a constant with dimensions of  action is needed 
in the exponential  to give a dimensionless exponent.] Let us parametrize 
the Poincar6 group elements by (A ~ A, a ,  e) where (A ~ A) are the time- 
space translations and 

T V 1 
a t - [2 (1  + y)]l/2 c '  ~ - ( 1 -  V2/c2) ~/2' le[ = s i n ~  (13) 

characterize the boosts and rotations (of angle ~ around the axis -q = ~/1~1). 
It is also useful to use the momentum of a boosted particle of  mass rn to 
parametrize the Lorentz transformations 

p=2mcoz(l+a2) 1/2 [p~ 

In order to have (12) nonzero, it is clear that it has to contain a term linear 
in the group parameters and with dimensions of  action (unity) and this can 
only be a term in which one factor is mc (or pO) and the other a translation. 
Of  these 8's, only those having a term of the form incA ~ (or p~176 will 

2In this reasoning we have omitted any explicit indication of  the dependence on the contraction 
parameter  a ;  in fact, 8(g) should be written 8(g, A) etc. It is not difficult to see which 
mechanism associates coboundaries of  the original group with coboundaries and cocycles of  
the contracted group. The contraction process is a homomorph i sm of  the vector space of the 
Lie algebra, but  obviously not  of  the Lie algebra structure, which gets "abelianized." However, 
given a cocycle of  the contracted algebra ~3 c of  Go, i.e., a two-form 

f~<: ~< • ~< -, R/f~c(zc, [z ' ,  z~]) + a<(z' ,  [z~, zA) + a<(z~, [&, z'A) = 0 

the homomorph i sm of vector spaces f :  ~ +  ~g~ induces a bilineal form 12-=f*12 c : ~ x ~-->R 
in the natural  way. If 1) has to be a cocycle o f  ~d, it has to satisfy 

n(z, [z', z"])+n(z', [z", z])+n(z", [z, z']) =0 

Despite the fact that, in general, [Zc, Z ' ]  # [Z, Z']~ the above expression will be true if, when 
both commutators  are different, the difference belongs to ker fl. This is the case for the 
Poincar6 and  Galilei groups,  for which (see Section 3) f([XA',X~q])=28uXA~ 
[f(Xa,),f(X~j)]=O and XAOE Ker 12. 



Cohomology, Central Extensions, and Dynamical Groups 147 

generate a true cocycle in the nonrelativistic limit [3(g)'s such as mcA ~ will 
generate a coboundary with no "nonrelativistic" limit]. We may thus define 
an equivalence relation within the Poincar6 coboundaries r with nonrela- 
tivistic r limits by identifying 6(g) such that 3 ( g ) - ~  for c ~  and such 
that O(6(g)- (g))/aglg=e = 0 (for instance, incA ~ and p~176 belong to the 
same "class"). The resulting "cohomology group" is isomorphic to the 
(true) Galilei cohomology group, which, as. is well known (Bargmann, 1954), 
is simply parametrized by the mass. 

As a first example, let us evaluate the left-invariant vector fields for 
the coboundary generated by 6(g)=-rncA ~ which is given by 

~(g', g) = -2mcod2A ~ + c~)1/2a ' .  R'A (14) 

With the parametrization (13), the Poincar6 left-invariant vector field are 

2 a 0 
X I ( ' A  ~ ~" (1 + 2 a  ) ~-A-6+ 2(1 "q- Of 2) 1/20/. "0---~ 

212 ~ i i �9 X(ak)=2(l+a ) / R~aj-~+(Rk+2Ol ajR~) oA , 

1 t �9 O 1 
X~,> = (1 + a2) 1/~ [R~+ atR,a j] -~aj4 (1 + a2) '/2 [(1 - e2)l/2rl~k, 

" n s q n - l k  m G~ 
- - ' r l ~ s n ~ . k i e  J l ~  m a - -  (15) 

oej 

For the direct product extension 3~| U(1) as given by the coboundary (14) 
we get either by direct computation from the group law (1) or by using (6a) 

= o )  - -  

~'~ ~A g) ~- X ~A k) - -  2mc(1 + a 2 )  1/2 0tjRJkZ 

2~ , )  = X~,) (16) 

- O 

whose commutation relations are those of ~ (plus [~7, any X] = 0) but for 
the commutator 

[2~ , ) ,  ~'~a~)] = 26,~(X~ao)- rncE) (17) 

which also follows from (7). 
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The canonical  left-invariant 1-form 0 on the Poincar6 group is derived 
from (15). The different components are 

0~o = (1 + 2 a  2) dA~ + ae)l/2ot �9 dA 

0 L= -2(1 + a2) l /2R- t (e )a  dA~174 dA 

L -- ~ x d E - R - l ( ~ ) ( o t  x d ~ )  0 ~ = ( l - e 2 ) l / 2 d e - ( ~  "d~)(l e2)-l/2E+ 

0~ = R-l(e)[(1 + a2)'/2do~-(~x" dot)(1 + a2)-'/20t] (1 S) 

L The component 0r = O in ~ of the direct product extension as given by the 
coboundary (14) is now readily found to be 

0 = -2rnca 2 dA~ + a2)~/2~ �9 dA+ dr 
ir 

de = i--~+p, d A -  (pO_ me) da ~ = d____{_i( mc(O~o- da ~ (19) 

instead of | = dr 
Let us now give the explicit formulas for the nonrelativistic limit. In 

it, the Poincar6 coboundary (14) gives the Galilean cocycle 

~:(g', g) = -m(�89 + V ' .  R'A) (20) 

where B =- A~ the left vector fields become those of the extended Galilei 
group 

a o-~- }m V2Z A ( B  ) - - ~ m v  

fs = X~A')-- mR~ Vk~ = Rk ( - ~ - -  mVk - )  

~ 2 ~ l / 2 R j _ t  - ~ j  k'~ 0 (21) 

O V  k , 
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and the canonical form on G(,~) is now found to be 

0" = dB 

0 A :  R - I ( e ) ( d A - V  dB) 

0 ~ = (1 - E2)  1/2 de  - d ( ( 1  - E 2 ) I / 2 ) E  + E  •  (22) 

0 v = R - l ( e ) d V  

d~ 
| = rnV. dA- �89  2 d B + - -  

We now give two more examples. For 6(g) = -A~'p~, we get the follow- 
ing Poincar6 coboundary: 

((g' ,  g) = - a ' ( A ' p  -p ' )~ ,  g', g ~ P (23) 

whose limit is the Galilean cocycle 

~ ( g ' , g ) = m [ A ' .  R ' V - B ' ( � 8 9  '.  R'V)], g ' , g 6  G (24) 

Similarly, for 6(g) = 2mc(1 + oLE)l/2ot  �9 A -  incA ~ = A" p -  incA ~ we get 
the following: 

Poincar~ coboundary, 

(p' -R'A)  
s C ( g , , g ) : [ ~ m A O + R , A 4 m _ ~ p ; ~ m c ) P , ] . [ y p , + R , p _ t  (p' �9 R'p) l P' I 

- ( p 6 -  mc)A ~  p' .  R'A (25) 

Left-invariant fields ; 

f(l(ao) = X~A~ + 2inca2(1 + 2a2)Z 

XI(A k) : XI(A k) + 2me(1 + a 2) 1/22ot2 oljRJ Z 

2~ , )  = X~,)  (26) 

2~,,) = X~&,)+ 2mca,,[ R'~ + 2a mcgR~]E 

2~,) = z 

Poincard O, 

| = - A "  d p -  (pO_ mc) dA~ d~ 

Galilean cocycle, 

~(g', g) = mEA" R'V+ B(V' .  R 'V+IVn)]  

(27) 

(28) 
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Extended Galilei vector fields, 

2~s) =O+V'0B ~A + �89 

OA k 

2 ~ ' ) = [ ( 1  -e2) ' /2Sl+ ~7.ike j k] 0#0 

Galilei 19, 

(29) 

O = - m A .  dV-�89 2 dB+ d~ (30) 
i~" 

(28) and (30) were extensively used in Alg:laya and de Azc~irraga (1982). 
The observation of (19), (26) makes explicitly manifest that there is no 

biunivocal correspondence between the group P |  U(1) and the E com- 
ponent O of the left-invariant 1-form defined on it, which depends on the 
coboundary selected to write explicitly the group law. Nevertheless, as O 
is determined by the coboundary (Section 2) the structure of ~ | U(1) ~ '~ 
as a principal fiber bundle with connection O is completely determined. This 
result is a consequence of the following theorem on invariant connections 
(Kobayashi and Nobizu, 1963): 

Theorem. Let G be a connected Lie group and H a closed subgroup; 
let ~ and ~o be the Lie algebras of G and /4, respectively. 

(a) If  there is a subspace M of qd such that ~ = M G ~  and ad(H)  
= M, then the ~g component 19 of the canonical 1-form 0 on G with 

respect the decomposition ~ = M G ~ defines a connection on the bundle 
G ( G / H ,  H)  which is left invariant under the left translations of G. 

(b) Conversely, any connection in G ( G / H ,  H)  invariant under the left 
translations of G determines such a decomposition ~ = M G ~  and is 
obtained in the manner described in (a). 

(c) The curvature 2-form cur t9 of the invariant connection 19 is given 
by 

I'~(X, Y)=  [X, Y]l~e-=-19([X, Y]) 

for any arbitrary left-invariant vector fields X, Y on G belonging to ~ .  
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In our case, G-= ~ |  U(1), H-~ U(1). If the function 6 generating the 
coboundary fulfills (11), J/t is a subalgebra (that of ~ )  and the curvature 
is flat [(11')]; when (11) is not satisfied, then the curvature is given by (c) 
above. 

Table I collects a set of  examples for which 6~ is undefined including 
those discussed in this section. 

4. QUANTIZATION ON A GROUP MANIFOLD AND 
CONTRACTION 

The above analysis is of special relevance in connection with the 
formulation of a quantum dynamics on a group manifold. Strictly speaking, 
the quantization formalism based on a symmetry group breaks down when 
it is applied to the relativistic case because the Poincar6 group does not 
admit (quantum) extensions by U(1) other than direct product ones. Thus, 
one is led to consider infinite Lie groups, graded Lie groups, or perhaps 
even both. (The N = 2 super-Poincar6 extended by a central charge, for 
example, has already been studied (Aldaya and de Azcfirraga, 1983)). In 
this last section we analyze in which way the considerations of Section 3 
could constitute a partial way out of the no U(1)-extension problem for 
the quantization of relativistic boson systems. 

Following a previous work (Aldaya and de Azc~irraga, 1982), we start 
directly with the form generated by the coboundary (25), which have (28) 
and (30) as their Galilean limits. The election of  an extension characterized 
by a 3(g) which does not fulfill (11) may be justified by the requirement 
that the group law of ~ |  U(1) (or, what it is equivalent, the connection 
form O) has to give as nonrelativistic limit the quantum Galilei group (3<,,~. 
The characteristic module of 19, {f f / i219 = i2 dO = 0} is generated by X~ao), 

" L  
X(~) and this set, completed with J~/"A~ generate an horizontal subalgebra 
which defines the full  polarization. The Hilbert space of the wave functions 
is then characterized by the conditions 

~7 �9 q~ = iV, �9 = ~ ( A  ~', E, ~t, ~') (31) 

[U(1) function] which implies ~ = ~'q~(A ~, ~, t~) plus 

�9 , I ,  = o ,  , I ,  = o ,  2 Ao> �9 , I ,  = o ( 3 2 )  

the first two of which remove the A (space) and ~ dependence and the third 
gives 

= eTi( p . . . .  ~xoq~(p) (33) 
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where we have rewritten A ~  x ~ and used p instead of ot [(14)]. Thus, the 
equation of  motion (3~A~ ~ = 0) is 

0q~(t, p) 
i - -  - [c(m2c2+p2) 1/2- mcZ]~p(t, p) (34) 

Ot \ 

which leads to the Schr6dinger equation in the nonrelativistic limit. This 
was to be expected; to obtain the nonrelativistic limit from the Kle in-Gordon 
equation 

0~o(t, p) 
i - -  c(m2c2+p2)l/2q~(t, p)  (35) 

Ot 

the rest energy m e  2 has to be substracted by means of a redefinition 
-> ei"cx~ This allows the limit to be performed since rnc is not defined 

for c--> ce. It should be remarked that this change of variables if '= eimCx~ ", 
x ~ x ~ modifies (27) by an additional exact form d ( - m c A ~  

c/{ 
19'= - A  . d p -  po dA~ + -~ (36) 

which obviously does not alter the symplectic structure of  the phase space. 
However, the same change in the group law leads to the explicitly trivial 
composit ion law and to @ = d~/i~ (Section 2). Moreover, the 1-form (36) 
which leads to the Kle in-Gordon  equation can only be derived as the dual 
of  a set of  vector fields that, although they reproduce a Poincar6 action, do 
not give by integration the Poincar6 Lie group but an orbit in a bigger 
group. (Aldaya and de Azc~rraga, 1985.) Indeed, it may be checked that 
the addition of the terms m c ( l + 2 a 2 ) ' ~ ,  2 m c ( l + a 2 ) ~ / 2 R ~ % E  to the 
expressions of  X~-A o) and .~Ak), respectively, in (26) is sufficient to derive 
both (35) and (36). However, the new algebra, although fulfills the same 
commutat ion relations as the algebra of  (26) does not correspond to the 
action of a Lie group on itself written in canonical coordinates. 

To conclude we remark that the use of  coboundaries defining nonflat 
connections, which as shown above solves the problem of defining the 
nonrelativistic limit in a geometric manner,  breaks nevertheless the canonic- 
ity of the quantization method at this stage in the sense that Nature has to 
choose between isomorphic groups. On the contrary, the use of  symmetry 
groups as abstract symmetry structures (as in the Galilean case where the 
quantum group G(,,) is characterized by a cohomology class of G)  leads 
us to the need of  substituting more ample structures for the Poincar6 group 
(Aldaya and de Azc~irraga, 1982, 1983, 1985). 
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A C K N O W L E D G M E N T S  

This  p a p e r  has  b e e n  pa r t i a l l y  s u p p o r t e d  t h r o u g h  a g r an t  f r o m  the  

C o m i s i 6 n  A s e s o r a  p a r a  la I n v e s t i g a c i 6 n  C i e n t i f i c a  y T 6 c n i c a  ( C A I C Y T ,  

con t r ac t  N o .  1261-82). 
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